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 Abstract  

This paper presents a crystallographically-based constitutive model of a single crystal 

deforming by climb and glide. The proposed constitutive law is an extension of the rate-

sensitivity approach for single crystal plasticity by dislocation glide. Based on this 

description at single crystal level, a homogenization-based polycrystal model for 

aggregates deforming in a climb-controlled thermal creep regime is developed. To 

illustrate the capabilities of the proposed model we present calculations of effective 

behavior of olivine, and texture evolution of aluminum at warm temperature and low 

strain rate. In both cases the addition of climb as a complementary single-crystal 

deformation mechanism improves the polycrystal model predictions. 
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1- Introduction 

At high homologous temperatures and stresses above a certain threshold, materials 

exhibit rate-dependent plastic deformation, carried by stress-assisted and thermally-

activated dislocation motion. Although even at lower temperatures the flow stress also 

shows some dependence with strain rate, this dependence becomes stronger above 0.3-0.4 

TM, determining a thermal power-law creep regime with low creep exponent (high rate 

sensitivity) [1]. This high-temperature plasticity regime can be further partitioned, 

depending on the actual microscopic mechanism that controls the dynamics of 

deformation. In metals below 0.5 TM, a thermally- and stress-assisted movement of 

dislocations over obstacles is responsible for a glide-controlled creep regime [1-3]. In 

this case, the shear component of the applied stress acting along the glide direction on the 

glide plane is the one that promotes dislocation movement. The creep exponent 

corresponding to this regime can be shown to be around 3 [1-3]. At higher temperatures, 

the interaction of dislocations with local non-equilibrium concentrations of point defects 

permits the dislocations to climb as well as glide. Thus, there are two main differences 

between this climb-controlled creep [1,4,5] and the previous glide-controlled regime.  

First, climb requires us to account for diffusion of point defects to or from a climbing 

dislocation. Secondly, in addition to the role played by the resolved shear stress, the 

effect of the diagonal stress components must also be accounted for. The creep exponent 

corresponding to the climb regime turns out to be close to 3 when lattice diffusion is the 

dominant mechanism [1,4,5]. In the special case of irradiated materials, the continuous 

creation of point defects during irradiation affects the dynamics of climb-controlled 

creep. When materials under irradiation are subjected to stresses well below their flow 

stress, they deform by irradiation creep at any temperature, with strain rates that are 

proportional to the applied stress (linear creep) [6-8]. For materials irradiated at high 

temperature, irradiation and thermal creep are coupled mechanisms. This coupling may 

lead to a significant increase on the total creep rate, compared to the mere additive 

superposition of both creep mechanisms [9]. 

Despite the relevant role played by dislocation climb in high-temperature plasticity and 

irradiation creep, the present work is, to our knowledge, one of the few attempts (and the 

most comprehensive) to consider the simultaneous activity of crystallographic climb and 
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glide, and to utilize the resulting continuum constitutive description to model the 

behavior of polycrystalline aggregates deforming in the climb-controlled creep regime. 

Previous works that made use of the geometry of climb at single crystal level to construct 

a polycrystal model are the formulations of Rougier et al [10, 11], and Tomé and 

Christodoulou [12] for the study of the irradiation-induced creep and growth of Zr-alloy 

polycrystals.   

The paper is organized as follows. In section 2 we present the constitutive description of 

a single crystal deforming viscoplastically by climb and glide, taking into account the slip 

system geometry and the character of the dislocations present in the crystal. The proposed 

constitutive behavior is an extension of the rate-sensitivity approach for single crystal 

plasticity by dislocation glide. In section 3 we perform a limit analysis for the cases in 

which the dislocations in the crystal show either a pure edge or a pure screw character. In 

section 4 we show how a polycrystal model based on non-linear homogenization can be 

built from the climb-and-glide constitutive description for single crystals. In section 5 we 

present two examples of high-temperature plasticity for a geological material (olivine) 

and a metallic alloy (aluminum).  We show that the addition of climb as complementary 

deformation mechanism at single crystal level improves the predictions of our 

homogenization-based polycrystal model. In section 6 we provide some concluding 

remarks and envisage future applications of the proposed model.   

  

2- Single crystal deformation by climb and glide 

For applied stresses above a certain threshold, plastic deformation occurs largely by 

dislocations overcoming obstacles under the influence of stress-assisted thermal 

activation. In what follows, we will assume stresses applied to a crystalline material 

which are above the threshold (otherwise, the deformation process would be controlled 

by pure diffusional flow, without a significant role of the dislocations). The geometry of 

the above process can be described most simply in terms of the motion of a single 

dislocation of arbitrary orientation [13]. Let us consider the coordinate system 

( )321 xxx ,,  (Fig. 1). The normal to the slip plane is specified by the unit vector n̂  (in 

what follows, the caret is used to indicate unit vectors) along direction 2x . Dislocation 
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motion produces a displacement b (Burgers vector) of the crystal containing n̂+  relative 

to that containing n̂−  in the direction of the unit vector b̂  along 1x . This slip coordinate 

system is completed by the unit vector nbξ ˆˆˆ ×=  along direction 3x , the Taylor axis.  

Dislocation motion occurs in the direction of the velocity vector v, which is normal to the 

dislocation line and has two components: the glide velocity, gv , which lies in the slip 

plane, and the climb velocity, cv , which is parallel (or anti-parallel) to n̂ . Since a screw 

dislocation has no unique slip plane, the velocity vector of a screw dislocation can lie in 

any plane on which the dislocation can glide. The slip plane of a moving screw 

dislocation is specified by its unit normal, formed by the vector product of unit vectors 

parallel to v and b. Since it must lie entirely in a slip plane, the velocity vector for a 

screw dislocation has no climb component. 

Another reference frame, the dislocation coordinate system, can be defined based on t̂ , 

the tangent to the dislocation line, n̂ , and χ̂ , a unit vector parallel to gv . Both the glide 

and climb velocity of these components arise in response to the corresponding component 

of the Peach-Koehler (P-K) force on the dislocation. The Peach-Koehler force, a virtual 

force per unit length acting on the dislocation is defined as (e.g. [14, 15]): 

( ) tbf ˆ×⋅σ= ,          (1) 

from which we can define a glide component χf ˆfg ⋅=  , and a climb component nf ˆfc ⋅= . 

Note that, by this definition, the force on a moving screw dislocation is purely a glide 

force, since it always lies in its glide plane. Hence, motion of the screw dislocation in 

response to the P-K force is always conservative, i.e. it occurs without the emission or 

absorption of point defects. 

 Replacing Eq. (1) into these definitions gives: 

( )[ ] ( ) ( ) ( ) ( )nbbnbbχtbχtb ˆˆ:ˆˆ:ˆˆˆˆfg ⊗σ′=⊗σ=×⋅⋅σ=⋅×⋅σ= ,   (2) 

( )[ ] ( ) ( ) ( )χbbntbntb ˆˆ:ˆˆˆˆfc ⊗σ−=×⋅⋅σ=⋅×⋅σ= .     (3) 
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Note that the last equality in Eq. (2) follows from the normality between b̂  and n̂ , and 

states that the glide force depends only on the deviatoric component of the stress, σ′. The 

climb force, on the other hand, depends on the full Cauchy stress, σ. However, further 

thermodynamic considerations (see [16, 17] for details), led to a modification of Eq. (1), 

involving the distinction between a mechanical force produced by an applied stresses, 

originally identified by Peach and Koehler [14] and a chemical force due to non-

equilibrium concentration of vacancies, originally proposed by Bardeen and Herring [18], 

such that [16]: 

( ) ( )o,PTB
v v3

k Tˆ ˆlog x x
 

′  = σ ⋅ × + − ×
 α 

f b t b t
b

     (4) 

where α|b|3 is the volume change due to the formation of a vacancy and the first and 

second terms on the right are the mechanical, or Peach-Koehler, and chemical, or 

Bardeen-Herring, components of the force, respectively. In the expression for the 

chemical force, vx  is the actual concentration of vacancies, PT,o
vx  is the equilibrium 

concentration of vacancies at a hydrostatic pressure P and temperature T, and Bk  is 

Boltzmann’s constant. Therefore, while the expression of the glide component of the 

force is still given by: 

( )[ ] ( )nbbχtb ˆˆ:ˆˆfg ⊗σ′=⋅×⋅σ′= ,       (5) 

the climb component should be written as: 

( ) ( )

( ) ( ) ( )

o,PTB
c v v3

o,PTB
v v3

k Tˆ ˆ ˆf log x x

k Tˆ ˆˆ ˆ: log x x

  
 ′  = σ ⋅ × + − × ⋅ =
  α  

 
′  = − σ ⊗ − − ⊗

 α 

b t b t n
b

b b χ b b χ
b

 

 

(6) 

If the vacancy concentration in the crystal is everywhere equal to the equilibrium 

concentration for pressure P and temperature T, the chemical force becomes zero and the 

pressure dependence of the climb force disappears. This condition is possible if the 

sources and sinks for vacancies (dislocations and grain boundaries) are such that 



 6 

vacancies are produced or annihilated by these sources and sinks to maintain the required 

equilibrium concentration. In the remainder of this paper we will assume this condition is 

satisfied and will consider that the climb component is thus given by: 

( )[ ] ( )χbbntb ˆˆ:ˆˆfc ⊗σ′−=⋅×⋅σ′= .       (7) 

Note that, in the case of the glide component, Eq. (5) is equivalent to Eq (2), while for the 

climb component, the Cauchy stress appearing in Eq. (3) is replaced in Eq. (7) by the 

deviatoric stress.  

The dyadic product in Eq. (5) is the classic glide tensor, which can be decomposed into 

symmetric and antisymmetric parts. Using explicit index notation 

( ) ( )ijjiijjiijijjiij n̂b̂n̂b̂
2

1
n̂b̂n̂b̂

2

1
qmn̂b̂g −++=+== ,    (8) 

where ijm is the symmetric Schmid tensor and ijq  is the corresponding antisymmetric 

(plastic rotation) tensor (note that since nb ˆˆ ⊥ , ijij mandg are traceless). The product 

( ) σ′=⊗σ′ :mˆˆ: nb  appearing in Eq. (5) is the resolved shear stress (i.e. the 12
′σ  

component of the external stress tensor expressed in slip-system coordinates), which, 

according to the Schmid law, has to reach a threshold value for slip activation. Equation 

(5) thus provides a physical interpretation of the phenomenological Schmid law, i.e. slip 

is activated when a critical value of the force acting on dislocations is reached to 

overcome the slip resistance and start dislocation motion. The Schmid law has been 

modified to account for rate effects and multislip, giving raise to the widely used rate-

sensitivity constitutive equation for single crystal material points deforming plastically by 

glide [19], i.e. 

( )σ′
















τ

σ′
γ=











τ

τ
γ=γ :msgn

:m
s

n

s
o

s

o

n

s
o

s

o
s

g
g

ɺɺɺ ,     (9) 

and: 
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( )σ′
















τ

σ′
γ=γ=ε ∑∑

==
:msgn

:m
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N

1s

n

s
o

s

s
ijo

N

1s

ss
ij

g
ij

s

g

s

ɺɺɺ ,     (10) 

where gεɺ  is the (traceless) plastic strain rate tensor induced by glide. In the expression 

above the sum runs over all Ns active slip systems; sm  and s
oτ  are, respectively, the 

Schmid tensor and the threshold resolved shear stress associated with glide in system (s); 

sγɺ  is the shear rate on slip system (s); oγɺ  is a normalization factor and gn  is the stress 

exponent (inverse of the rate-sensitivity) associated with glide. Note that at sufficiently 

high stresses the power-law Eq. (9) is in fact an approximation of the actual rate-equation 

for dislocation glide limited by discrete obstacles, i.e. an Arrhenius relationship between 

the flow shear stress and the shear rate of the form [1, 20]: 



























τ

τ
−

∆
−γ=γ

s
o

s
os 1

kT

F
expɺɺ         (11) 

where F∆ is the total free energy required to overcome an obstacle without aid of external 

stress. The constitutive parameters gn  and s
oτ  are temperature-, strain-rate- and 

microstructure-dependent. The plastic rotation rate of the crystallographic lattice is given 

by 

∑
=

γ=ω
sN

1s

ss
ij

p
ij

q ɺɺ .         (12) 

By analogy with the aforementioned constitutive description of a single crystal deforming 

plastically by glide, the dyadic product appearing in Eqs. (6) and (7) can be defined as a 

climb tensor [13], i.e. 

( ) ( )ijjiijjiijijjiij ˆb̂ˆb̂
2

1
ˆb̂ˆb̂

2

1
rkˆb̂c χ−χ+χ+χ=+=χ= ,    (13) 

where ijk and ijr  are, respectively, the symmetric and antisymmetric parts of the climb 

tensor. According to Eq. (7), in the case of equilibrium concentration of vacancies the 

climb tensor resolves the stress into a climb component in a similar way that the glide 
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tensor does for the glide component. However, there are some important differences 

between the two tensors. While ijg  is formed from two unit vectors based on the 

crystallography of the slip process independently of the dislocation line orientation, ijc  

depends on the orientation (character) of the dislocation. This dependence can be 

expressed in terms of a single parameterψ , i.e. the angle between t̂  and b̂ . Noting that 

ψ+ψ= sinˆcosˆˆ ξbt  and tnχ ˆˆˆ ×= , one can write [13]: 

( ) ( ) ( ) ψ−ψ=ψ cosξ̂b̂sinb̂b̂c jijiij ,       (14) 

where the dyadic products are only functions of the slip system crystallography, and the 

dependence of the climb tensor with the dislocation orientation is specified by ψ . This 

parameter accounts for the relative edge-screw character of the average dislocation 

density, and can be regarded as a measure of the ratio between the lengths of mobile 

dislocation lines projected parallel ( screwρ ) and perpendicular ( edgeρ ) to the slip 

direction in the slip plane, such that screwedgetg ρρ=ψ . In addition, it is evident from 

Eq. (14) that the climb tensor is never traceless for dislocation distributions having a non-

zero edge component, i.e. 0sin ≠ψ , while the glide tensor is always traceless by 

definition. Hence, the symmetric climb tensor can be further decomposed into a 

deviatoric and a hydrostatic component, i.e. 

h
ij

d
ijij kkk += .          (15) 

For further analysis, the deviatoric, hydrostatic and antisymmetric components of the 

climb tensor expressed in slip-system coordinates are [13]: 

















ψ−ψ

ψ−

ψψ

=

sin20cos3

0sin20

cos30sin4
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1
kdij ,      (16) 
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=
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1
khij ,       (17) 
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=

00cos
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2

1
rij .        (18) 

Carrying on the analogy with the constitutive description of glide, we propose to treat 

climb as being activated when the climb force acting on dislocations reaches a critical 

value. In the case of equilibrium concentration of vacancies (i.e. climb force given by Eq. 

7), we can then define the scalar climb rate on system (s) as (c.f. Eq. (9)): 

( ),:ksgn
:k

s,d

n

s
o

s,d

o
s

c

σ′
















σ

σ′
γ=β ɺɺ        (19) 

where cn  and s
oσ  are, respectively, the creep exponent and a scalar threshold stress 

associated with climb. Note that the form of Eq. (19) accurately represents the rate-

equation associated with climb-controlled power-law creep. However, for higher stresses, 

at which the rate-equation becomes exponential (power-law breakdown regime, see e.g. 

[1, 21]), Eq. (19) should be regarded as a phenomenological approximation to the actual 

rate-equation, in the same way Eq. (9) for glide is, under certain conditions, an 

approximation of rate-equation Eq. (11). This definition leads to the following total strain 

rate of a single crystal deforming solely by climb (c.f. Eq.10): 

( ),:ksgn
:k

kk
s

c

s N

1s

s,d

n

s
o

s,d

s,d
ijo

N

1s

ss,d
ij

c
ij ∑∑

==
σ′

















σ

σ′
γ=β=ε ɺɺɺ      (20) 

and the following plastic spin associated with climb (c.f. Eq 12): 

∑ βγ=ω
s

ss
ijo

p
ij

r ɺɺɺ .         (21) 

Like their glide counterparts ( gn  and s
oτ ), parameters cn  and s

oσ  depend on 

temperature, strain rate and microstructure. The latter dependency, however, is more 

complex than in the case of glide, since not only the dynamics and interaction between 

dislocations determine the current value of those internal variables, but also the 
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interaction between point defects and dislocations are also relevant in the determination 

of the climb constitutive parameters. Moreover, note that, because the relative importance 

of the point defect-dislocation interaction depends on the character of the mobile 

dislocations, the climb parameters are likely to be also dependent on the average 

character of the dislocation density. However, for sake of simplicity, and lacking physical 

insight into this dependence, in this work we have assumed that cn  and s
oσ  do not 

depend on ψ .  

 

3- Limit cases 

Given the dependence of the constitutive relation for a single crystal deforming by climb 

with the average character of the dislocation distribution (through the parameterψ ), it is 

interesting to analyze the limit cases of pure edge and pure screw dislocations. In the case 

of an edge dislocation ( 2π=ψ ) climb produces strain (shape change) without lattice 

rotation (see Eqs. (18) and (21)). Moreover, in slip-system coordinates, the contracted 

product σ′:k s,d  appearing in Eq. (19) turns out to be 11σ′  and: 

( )11

n

s
o

11
o

s sgn

c

σ′














σ

σ′
γ=β ɺɺ   (edge dislocation).      (22) 

Hence, in the case of a pure edge dislocation, s
oσ  can be interpreted as a threshold 

stretching stress, corresponding to the deviatoric stress component acting along the 

direction of the Burgers vector, which provides the driving force for point defects to 

migrate towards the core of the dislocation and make it climb. 

In the case of a screw dislocation, 0=ψ  and, in slip-system coordinates, it is: 

13
s,d :k σ=σ′ ,         (23) 

( )13

n

s
o

13
o

s sgn

c

σ














σ

σ
γ=β ɺɺ   (screw dislocation).      (24) 
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and, using Eq. (24) in Eq. (20), the only non-zero component of the climb rate tensor 

turns out to be the shear c
13εɺ . Hence, in the case of a pure screw dislocation, s

oσ  should 

be interpreted as the threshold shear stress for cross-slip on the plane that is normal to the 

original slip plane defined by n̂ . This motion of a screw dislocation out of the slip plane 

on which the slip system is based is simply glide on a different plane, not climb, which 

does not need to be assisted by point-defect motion. If the crystallography of slip does not 

permit slip of screw dislocations on planes normal to the original slip plane, the glide 

force on the screw dislocation must be resolved onto permissible slip planes containing 

the original slip direction in order to obtain a suitable threshold stress. In the following 

development we consider the case described as a limiting case and do not investigate the 

detailed crystallography of glide of screw dislocations on different secondary planes for 

the examples studied. 

 

4- Polycrystal model 

The above climb-and-glide constitutive description at the level of a single-crystal 

material point can be used within the context of polycrystal models based on crystal 

plasticity to expand their applicability to the thermal creep regime, at high temperatures 

and low strain rates. Examples of these polycrystal models include full-field formulations 

like the different flavors of the crystal-plasticity finite element method (CPFEM) (e.g. 

[22-29]) or the Fast Fourier Transform (FFT)-based approach [30-32], and mean-field 

formulations like Taylor-type methods (e.g. [33]) or self-consistent (SC) homogenization 

methods. In what follows we present the extension of the viscoplastic self-consistent 

(VPSC) formulation [34,35] for the prediction of the mechanical behavior of polycrystals 

with constituent grains deforming by climb-and-glide. The original version of the SC 

formulation for aggregates of grains deforming by glide was implemented numerically in 

the VPSC code [36]. In recent years, the VPSC code has experienced a variety of 

improvements and extensions and it is nowadays extensively used to simulate plastic 

deformation of polycrystalline aggregates and to interpret experimental evidence on 

metallic, geological and polymeric materials (for a review of current capabilities and 

material systems studied with VPSC, see [37]).  
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The self-consistent (SC) formulation was originally developed for linear elastic materials 

[38]. For aggregates deforming in the viscoplastic regime, several self-consistent 

approximations were subsequently proposed. All these nonlinear variants are based on 

the linear SC solution, previous use of ad-hoc linearization schemes to approximate the 

non-linear mechanical behavior at single-crystal level. Here we present the climb-and-

glide extension of the first-order affine [39] VPSC formulation. 

Adding the contributions of glide (Eq. (10)) and climb (Eq. (19)), the constitutive 

equation of a single crystal (r) deforming by climb and glide is given by: 

( )

( ) ,:ksgn
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1s
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)r(
ij
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τ
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=

=

ɺɺ

  (25) 

where the climb and glide tensors and threshold stresses are assumed to be constant in the 

domain of single crystal (r), and the strain rate and stress are average tensors in the (r) 

domain. The linearized (affine) moduli of single crystal (r) follow from writing Eq. (25) 

in a pseudo-linear form: 

)r(o
aff

)r()r(
aff

)r( :M ε+σ=ε ɺɺ ,        (26) 

where: 
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  (27) 
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( ) ( )
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∑

=
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ɺɺ

 (28) 

From these equations a SC formulation can be built in the standard way (for details, see 

[37]). We have implemented this extended viscoplastic self-consistent formulation in the 

VPSC code, incorporating climb as an additional mechanism at single crystal level. Note 

that the affine linearization is very suitable for the above extension, since it does not 

require a single stress exponent, as other formulations do (e.g. tangent or secant 

linearizations, see [37]). Thus, the affine model can be used for different climb and glide 

exponents.  

 

5- Examples 

5-1 Creep of olivine 

Olivine is the mineral that makes the majority of the Earth's upper mantle. The mantle is 

known to exhibit seismic (elastic) anisotropy, commonly attributed to Lattice Preferred 

Orientation (LPO, i.e. crystallographic texture) of its constituent minerals. The 

development of LPO is due to plastic deformation of these minerals associated with 

large-scale convective flow. Olivine crystals exhibit orthorhombic symmetry and have a 

few systems available for glide-controlled creep (only three of them are linearly-

independent, short of the five independent glide systems needed to accommodate an 

arbitrary deformation imposed to the crystal). This reduced number of linearly-

independent glide systems leads to a very high viscoplastic anisotropy at the grain scale 

in olivine. Hence, until now, either a very crude homogenization scheme like the 

equilibrium-based Sachs model [40, 41], or the presence of an artificial hard glide mode 

[42-44] that provides the additional degrees of freedom, had to be assumed to perform 
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crystal plasticity-based calculations on polycrystalline aggregates of this material. 

Although by assuming a sufficiently hard artificial glide mode, its relative activity in 

VPSC simulations can be reduced to small values, the predicted effective response is 

strongly dependent on the threshold stress of such hard mode (e.g. in the affine VPSC 

case, the effective stress of a random olivine polycrystal scales with M
0.75

, where the 

contrast parameter M is the ratio between the critical stresses of the artificial hard mode 

and the soft systems. In full-field calculations the exponent of M turns out to be 0.5 [37]). 

This undesirable dependence of the effective stress with the strength of the artificial hard 

mode prevents geophysicists from a reliable use of such model in multiscale simulations 

of mantle's convection [45].  

The incorporation of dislocation climb as an additional deformation mechanism 

(dislocation climb is likely to be active in mantle's olivine, deforming in natural 

conditions at low strain rates and high homologous temperatures, in the power-law climb-

controlled creep regime [46]) addresses the above limitation. Figure 2 shows the effective 

stress predicted by the VPSC formulation (with and without climb at single crystal level) 

for an olivine polycrystal with random texture, as a function of the contrast parameter M, 

assuming the slip modes and constitutive parameters reported in Table 1. The slip modes 

and their correspondent threshold stresses for glide considered here are those used in 

[43], and based on experimental results [47-49]. As for the threshold stresses for climb, 

we have assumed them to be equal to their glide counterparts, and the edge and screw 

dislocation densities were assumed to be equal. Evidently, the incorporation of climb 

provides additional degrees of freedom to the available single crystal deformation 

mechanisms, such that the effective stress saturates at sufficiently high values of the 

contrast parameter. Figure 3 shows the relative activities (defined as the average strain-

rates, calculated over the entire polycrystal, accommodated by each mechanism and each 

slip mode, divided by the total strain-rate) that were obtained in our climb-and-glide 

calculations versus the glide-only predictions (the relative activities of glide of all the soft 

systems were added together and shown under the "glide" label, the relative activities of 

climb of the same set of systems were added together under "climb", and the glide and 

climb activities of the hard mode were added together under the "artificial mode" label). 
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Evidently, the availability of the climb mechanism drastically reduces the need for 

activation of the artificial mode when the contrast is large. 

 

5-2 Low strain-rate compression textures of Al at warm temperature 

Stout et al. [50] reported compression textures of a 5182 Al alloy deformed up to 60% 

strain, at different temperatures (from room temperature to 550°C) and strain rates (1 s
-1
 

and 10
-3
 s

-1
). Cylindrical samples were cut with their axes along the rolling and normal 

directions of a plate with a typical (001)<100> recrystallization texture. Therefore, the 

compression samples had an initial texture with the (001) crystal orientations 

predominantly oriented along the compression axis, up to an intensity of about 4 mrd 

(multiple of random distribution). Stout et al.'s results showed that, depending on the 

temperature and the strain rate of the test, the final textures were characterized by either a 

retained (001) cube texture, or a <110> fiber (i.e. a typical compression texture in fcc 

materials), or a mixed texture with both the (001) and (110) components present. Another 

important result reported in Stout et al.'s work is that the samples tested at 400°C and 

below showed no evidence of dynamic recrystallization during the compression test or 

static recrystallization during quenching. Samples tested at room temperature and 200°C 

at both strain rates showed typical (110) compression textures. At 400°C and a strain rate 

of 10
-3
 s

-1
 both the (001) and the (110) components are present, with similar intensity in 

the measured inverse pole figures, while at 400°C and 1 s
-1
 the (001) cube component is 

greatly diminished. In order to explain the presence of the (001) cube component in 

absence of recrystallization, Stout et al. invoked the activity of non-octahedral 

>< 011)110( slip (together with the standard >< 011)111(  octahedral slip mode), 

reported to occur in experiments done on Al single crystal and polycrystals at such 

temperature [51], and whose activity is known to stabilize the cube component [52]. On 

the other hand, in order to explain the differences between the 400°C textures at different 

strain rates, Stout et al. had to make a very strong assumption, namely that there is a very 

sharp decrease in rate sensitivity as strain rate increases.  

However, the retained (001) cube component at warm temperature and low strain rate can 

be satisfactorily explained in terms of the likely activity of climb under those conditions, 
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as follows. Figure 4 shows different VPSC simulations of texture evolution of Al 5182 

after 60% uniaxial compression. Lines correspond to increments of 0.5 mrd and dots 

indicate regions below 0.5 mrd. The initial (001) texture, with a maximum intensity of 4+ 

mrd. is shown in Fig. 4a. The second row shows the influence of the rate-sensitivity 

exponent when glide only on slip mode (111)<110> is assumed. Evidently, as pointed out 

in [50], an increase in rate sensitivity contributes to the retention of the cube component. 

However, even when a reasonably low creep exponent is used (i.e. n=3) the standard 

(110) compression texture component is more than twice as intense as the retained (001) 

cube component. (Note that, according to Frost and Ashby's deformation-mechanism 

map for Al [1], the combination of homologous temperature, strain rate and applied stress 

clearly implies that both 400°C tests lie within the climb-controlled creep regime, 

characterized by an exponent not larger than 4).  The third row shows the VPSC 

calculations considering climb and glide activity at grain level, making the most 

reasonable assumption for the edge/screw ratio, i.e. 4π=ψ , which amounts to consider 

equal total lengths of mobile edge and screw dislocation lines in each slip system. Note 

that this assumption is compatible with the similar mobility that both types of 

dislocations have in fcc crystals (e.g. [53]). In particular, the simulated texture shown in 

Fig. 4d is the one that resembles the most the experimental texture reported at 400°C and 

10
-3
 s
-1
. In this case, both threshold stresses for climb and glide were assumed to be equal 

( s
o

s
o τ=σ ), which resulted in similar contributions from of climb and glide. Evidently, the 

significant fraction of plastic strain accommodated by climb of edge dislocations (which, 

as discussed above, does not involve lattice rotations) was responsible for a significant 

retention of the initial (001) cube component. Otherwise, favoring glide over climb by 

assuming the threshold stress for climb to be twice the glide stress ( s
o

s
o 2 τ×=σ ) 

determines that around 90% of the strain is accommodated by glide, which in turn 

predicts a texture (Fig. 4e) not far from the glide-only case (Fig. 4c). Finally the fourth 

row illustrates the importance of using a sound value for the average character of the 

dislocation density. If a predominant screw dislocation character is assumed (e.g. 

01.0=ψ ), which amounts to consider a ratio 9:1 between the screw and the edge 

dislocation densities (a value more compatible with a bcc, rather than a fcc material, due 
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to the much lower mobility of screw dislocation segments in bcc structures [53]), the 

resulting texture (Fig. 4f) is clearly a standard compression texture, with the (110) fiber 

intensity even higher than the glide-only case. The depletion of the cube component is 

due to a significant reduction in the edge dislocation climb that tends to stabilize the 

(001) component. On the other hand, the intensification of the (110) component can be 

understood regarding the additional simulation shown in Fig. 4g, in which glide-only was 

assumed, but on slip mode (112)<110>, instead of the standard (111)<110> slip. Note 

that this non-octahedral glide corresponds precisely to glide on planes that are 

perpendicular to the original (111) slip planes. This simulation corresponds to the slip of 

screw dislocations onto a slip plane orthogonal to the original slip plane, as described in 

Section 3. 

 

6- Concluding remarks 

We propose here a crystallographically-based continuum constitutive description of the 

viscoplastic deformation of single crystals by climb-and glide, extending the well known 

rate-sensitivity approach for crystal plasticity by glide. The model introduces three 

important constitutive parameters, i.e. the average edge/screw ratio ( ψtg ), the creep 

exponent associated with climb ( cn ) and a threshold stress for climb activation ( s
oσ ). All 

of them are likely to be temperature-, strain-rate- and microstructure-dependent. 

Concerning the average character of the dislocations, this quantity is difficult to 

determine experimentally, since it involves measurements on dislocations moving during 

the deformation process. However, 3-D dislocation dynamics (DD) models (e.g. [53-56]) 

may provide useful estimates of the magnitude of this parameter and how it evolves with 

deformation. Concerning the creep exponent, a value of 3 is widely accepted for thermal 

creep [5], when this process takes place exclusively by climb. However, when creep is 

controlled by climb but most of the dislocation motion is by glide, the macroscopic creep 

exponent tends to be higher [1]. The reason for this could be related to the complicated 

coupling between climb and glide (e.g. when a gliding dislocation stops at an obstacle, a 

small amount of climb may allow it to overcome the obstacle and continue gliding, 

providing a significant amount of strain until it reaches the next obstacle, and so on). The 
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proposed model may need the addition of elaborated hardening laws, involving the 

mutual influence of the glide and climb strains on the evolution of the glide and climb 

threshold stresses, in order to capture the above complexity. Finally, the determination of 

the threshold stress for climb can be either done by inverse analysis, i.e. using available 

experimental results to adjust the value (or values) of s
oσ  that best fits the data, or using 

lower length-scale models to obtain the stress needed to move dislocations by climb in 

the presence of certain local concentration of point defects. This can be done semi-

analytically by means of rate theory (e.g. [57]) or, as recently reported by Mordehai et al 

[58] (and originally proposed by Raabe [59]), introducing dislocation motion assisted by 

bulk diffusion in DD models solving the diffusion equation locally for each dislocation 

segment, or introducing the point defects explicitly in DD codes and solving the elastic 

interactions between each point defect and the dislocation segments [60].   

The two examples provided in the paper show improved predictions of effective behavior 

and texture development in polycrystalline aggregates deforming in a climb-controlled 

thermal creep regime. On the other hand, irradiation creep can be treated similarly, 

although a proper consideration of the chemical component of the climb force is needed, 

to account for the continuous addition of point defects to the material. This determines 

that the instantaneous point defect concentration will not be in equilibrium during the 

deformation process, thus affecting the kinetics of dislocation climb and making 

necessary to consider the effect of the hydrostatic pressure on the single crystal 

constitutive behavior. Obviously, such description of climb under irradiation will depend 

on all the same microstructural variables and applied deformation conditions as in the 

case of thermal creep, and, additionally, on the type and dose of irradiation, as well as on 

the particular damaged microstructure developed in the studied material during 

irradiation [61]. 
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Figure Captions 

Figure 1: Slip coordinate system and corresponding unit vectors ( )ξnb ˆ,ˆ,ˆ . Unit vectors of 

the dislocation coordinate system ( )χtn ˆ,ˆ,ˆ . Dislocation line, and dislocation velocity also 

shown.   

 Figure 2: Effective stress of isotropic olivine vs. contrast parameter at single crystal level 

predicted with the VPSC model assuming glide-only and climb-and-glide as single 

crystal plastic deformation mechanisms. 

Figure 3: (a) Case of climb-and-glide in olivine. Relative activities of glide in the four 

slip modes observed in olivine, climb in the four observed slip modes, and climb-and-

glide in the artificial mode. (b) Case of glide only. Relative activities of glide in the four 

observed slip modes and the fictitious mode. 

Figure 4: VPSC simulations of texture evolution of Al 5182 after 60% uniaxial 

compression. Lines correspond to increments of 0.5 mrd. Dots are regions below 0.5 mrd. 

1st row: (a) initial (001) texture. 2nd row: (111)<110> glide: (b) n=10; (c) n=3. 3rd row: 

climb and glide in (111)<110>, n=3, equal edge and screw dislocation densities 

( 4π=ψ ): (d) s
o

s
o τ=σ ; (e) s

o
s
o 2 τ×=σ . 4th row: (f) climb and glide in (111)<110>, n=3, 

predominant screw dislocation density ( 01.0=ψ ); (g) (112)<110> glide, n=3. 

 

Table Captions 

Table 1: Slip modes and corresponding climb-and-glide constitutive parameters for 

olivine single crystals. 

 

 



 24 

 

Figure 1 

^ 

^ vg 

b ^ 
χ 

x1 

x3 ψ 

d 

v 

vc
n ^ 

t 

ξ 
^ 

x2 



 25 

1 10 100
1

10

100

 

 

e
ff
e
c
ti
v
e
 s
tr
e
s
s

contrast parameter M

 no climb

 climb

 

Figure 2 



 26 

1 10 100
1E-4

1E-3

0.01

0.1

1

1 10 100
1E-4

1E-3

0.01

0.1

1

(b)

 

 

contrast

 glide

 artificial mode

(a)

 r
e
la
ti
v
e
 a
c
ti
v
it
y

 

 

contrast

 glide

 climb

 artificial mode

 

Figure 3 



 27 

 

Figure 4 
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Slip mode g,oτ  gn  c,oτ  cn  oΨ  

(010)[100] 1. 3 1. 3 4/π  

(001)[100] 1. 3 1. 3 4/π  

(010)[001] 2. 3 2. 3 4/π  

(100)[001] 3. 3 3. 3 4/π  

{111}[110] M 3 M 3 4/π  

 

Table 1 


